您现在的位置: 网站首页 >  新闻资讯 > 技术文章

便携式低功耗电池供电电磁流量计测量电路的设计

便携式低功耗电池供电电磁流量计测量电路的设计随着微电子技术的快速发展,特别是一些性能稳定可靠的模块化、高集成度芯片及器件的问世,使得设计低功耗、便携式的现场检测仪表成为可能,也成为今后检测仪表及装置的发展趋势,流量测量应用中,电磁流量计作为无能量损耗的流量测量仪表, 以其独特的性能特征,已广泛地应用于工业过程中的各种导电液体的流量测量,形成了独特的应用领域,成为应用越来越广泛的流量测量仪表。目前国内的电磁流量计,普遍为工频交流供电或24V直流供电方式,功耗较大,在仪表便携式和低功耗的要求上没有得到实现。本文中的测量电路主要是应用于由电池供电电磁流量计中,从励磁方式和测量电路方面进行了低功耗设计, 同时满足测量的精度要求,使得电磁流量计的电池供电成为可能,可以更好的适应非市电等野外现场作业等环境,满足仪表便携式、低功耗的要求。
      1 电磁流量计的工作原理
      电磁流量计的测量原理是利用法拉第电磁感应定律,即导体在磁场中切割磁力线运动时,会在其两端产生感应电动势。表达式为:
      Ue=BLv (1)
      式(1)中,B为磁感应强度,单位是特斯拉(T);L为测量电极之间的距离,单位是米(m);v为被测流体在磁场中运动的平均速度,单位是米每秒(m /s);Ue为感应电动势,单位是伏特(V)。
      电磁流量计是依照该定律进行工作的。根据此定律,容易推得流体的体积流量为:
      Q=vA
      Q=(Ue/BD)(ΠD2/4)=(ΠD/4B)Ue            (2)
      式(2)中Ue为感应电压,单位为V;B为磁感应强度,单位为T,由电磁流量计的励磁系统提供;D为管道内径,即测量电极之间的距离,单位为m;Q为流体体积流量,单位为m3/s。由式(2)可知,只要获得电极感应电压就可推得流体的体积流量。
      2 励磁方式的低功耗设计
      电磁流量传感器采用三值低频矩形方波的励磁方式[1],三值低频矩形方波励磁的作用是产生感应强度B,励磁波形如图1所示。
     励磁信号的周期选为160ms,即励磁频率为6.25Hz,为工频的八分频,可对工频干扰起到正负抵消的作用。且三值矩形方波可以较好地消除测量电极两端产生的极化效应。励磁部分的功耗约占整机功耗的多半部分,通过单片机对模拟开关进行控制,每三秒钟输出一次励磁信号,即三秒钟内正负电池分别提供时长为30ms且幅值等于50mA 的励磁电流,如图1所示。当采用正负两组电池供电时,正电池提供正向励磁电流,负电源提供反向励磁电流,估算得正负电池用于励磁部分每年的耗能均为(单位为Ah):
      W=(30×103/3)×365×24×50×10-3=4.38Ah
      采用一次性锂电池供电,可以满足电池供电的低功耗要求。
      3 测量电路的设计
      本文中的测量电路是用于由电池供电的小口径电磁流量计中,采用了低功耗设计,不同于交流供电的电磁流量计[2],它通过对单片机的输入输出口进行控制,实现了分时供电与休眠,选择三值低频矩形方波励磁,降低励磁部分的耗能,从而达到低功耗设计的要求。由于从前端传感器检测到的信号的内阻一般为几MΩ,要保证仪表的较高精度,故对整个放大电路的精度要求更高。设计测量电路图如图2所示。
      测量电路主要由前置放大电路、二阶低通滤波器、电压高增益放大级和A/D转换电路以及单片机组成。
      3.1 前置放大电路
      由于励磁产生的磁感应强度信号为6.25Hz,则感应电动势也为同频率的交流信号,它即是被测信号。由于被测流体的内阻很大(与流体的电导率直接相关),高达几MΩ,故测量电路的第一级A1采用美国MAXIM公司的高精度增益可调的仪表放大器MAX4194,输入阻抗为1000MΩ,±2.5双电源供电,外接元件少,功耗低,符合仪表小型化的要求,并可通过外接精密电阻Rg1(图2)来调节放大倍数。该放大增益的计算公式为:
      A=1+50kΩ/Rg1
      考虑到被测信号中强噪声的存在,减少噪声进入后续电路以及使得精密仪用放大器处于线性工作区,选第一级放大倍数约为10,即Rg1为4.7kΩ或5.1kΩ 。
      3.2 二阶低通滤波器
      第二级采用典型的二阶低通滤波器。
      图2中R1、R2、C1、C2、A2构成了二阶压控电压源有源低通滤波器[3]。A2为美国MAXIM 公司低温漂的运算放大器MAX4477。由电路可知,通带电压放大倍数为:
      AVF=1                                                   (3)
      传递函数为:
      其中特征角频率
      ωn=1/R1R2C1C2                         (5)
      我们将 f=f0 时电压放大倍数的模与通带电压放大倍数之比称为Q值,即等效品质因素:
      根据式(4)求得低通滤波器的幅频特性:
      因此,当励磁频率选为6.25Hz时,取
      Q=0.707                                      (8)
       ωn=2Πf=2Π×6.25=39.27     (9)
      综合式(5)、(6)、(8)、(9),我们选取适合的数值:
      R1=47kΩ,R2=47KΩ,C1=0.75μf,C2=0.39μf
      使得低通滤波电路在6.25Hz的特征频率下有很好的低通滤波效果。
      3.3 高增益电压放大级
      第三级采用可调高增益电压放大电路。由MAX4197和MAX4194组成,MAX4194外接精密电阻用来调节放大器的增益。在这一级的输出端用电容C3,结合由单片机控制输出信号的模拟开关,形成反馈将噪声信号取回,与待测的流量信号形成差动信号,有效减少噪声信号的干扰。由于是两个放大器级联,故可以满足电路对信号的放大要求,使得整体放大倍数达到5万倍左右,输出信号的幅值达到0.4~2.4V,进入后续的A/D转换部分。在没有流量信号进入测量电路时,令单片机输出信号使得开关KA闭合,则放大器与电容形成负反馈闭环电路,把测量电路的固有噪声信号反馈到输入端;待到流量测量信号进入时,断开反馈回路,与电容上的噪声信号构成差动信号,有效抑制了干扰。
      3.4 双积分A/D转换器
      由于本设计采用电池供电,主要的噪声干扰来自于外部的工频干扰,为了降低功耗并有效滤除工频干扰信号,并不利用单片机的内部逐次逼近式A/D转换,而是采用独立的外接双积分A/D转换器[4]。双积分A/D转换器适用于转换速度要求不高,精度较高,尤其是对交流工频干扰有较强抗干扰的场合。通过选择高精度双积分转换器的基准电压源,利用单片机内部的定时器与计数器,并结合外部模拟开关的选通与截至达到对测量信号的A/D转换功能。
      双积分A/D转换器由R6、C4、A5、过零比较器以及单片机的内部计时器组成,双积分A/D转换器输入端的参考电压REF选用高精度的稳压基准电源LM285,A5为高增益低温漂的集成运放OP-90。过零比较器的输入端采用了输入保护,防止大电流损坏运放,输出端采用限幅措施,用以直接驱动后续的数字集成芯片。当开关KI闭合,在正向激磁信号下产生的正向流量测量信号被接入,积分电路对被测信号进行积分,经过T1的积分时间后,第一次积分结束,开关K-P闭合,积分器对参考电压-REF积分,同时单片机的内部计数器开始计时,当运放A5输出为零时,过零比较器的输出产生跳变,驱动与非门产生外部中断信号输入单片机,则单片机的内部计数器计数停止,第二次积分结束,由此被测的模拟信号电压值转变成了由单片机内部时钟脉冲CP计数的时间量,此计数值与被测输入信号的大小成比例关系。同理,当对反向激磁信号产生的正向流量测量信号进行测量时,即相应接通开关K-N,积分器对+REF进行积分,从而将测量信号的模拟电压值转换成时间量。
      双积分型A/D转换器的工作性能稳定,两次积分只要积分常数τ=R6C4不变,转换结果与τ=R6C4无关,若时钟脉冲CP周期Tc不变,且在T1=2nTc 条件下,转换结果也与时钟脉冲CP周期Tc无关:转换器使用双积分型A/D转换器,对交流噪声有极强的抗干扰能力,选积分时间为工频周期的整数倍时,就可以有效抑制工频干扰。由于本设计使用电池供电,故主要的交流干扰来自工频,所以使用双积分A/D转换器很好地滤除了50Hz的工频干扰。
      3.5 单片机选择
      一般CPU工作时要消耗较大量的功耗,电池供电电磁流量计的选型对CPU要求是严格的。我们选择低功耗单片机MICROCHIP公司的PIC系列单片机[5]。PIC16F877是PIC系列中的中高档产品,含有PWM,EEPROM 等丰富的接口模块和FLASH程序存储器。它的低功耗性能,在单片机时钟频率为2MHz,3V供电的情况下功耗低于1mA,适宜低功耗产品设计。
      单片机采用省电模式工作,每次输入,累计,显示处理后等待唤醒,这样工作功耗非常小。利用单片机输入输出口的脉冲信号对模拟开关进行控制,分时接通电源以及双积分转换电路的积分切换,使得测量电路功耗降至最低。
      本测量电路整体仪表通过实际的标定,与标准表测量结果相比对的数据如下表1所示。
      本设计中由电池供电的电磁流量计的放大电路,采用了高性能的集成电路和先进的设计思想,对强干扰背景下微弱信号的放大与A/D转换方式进行了研究。励磁电路的间歇式工作以及测量电路的低功耗设计,经实验验证,该测量电路能够满足对前端传感器输出信号的测量要求,流速V在0.4~8m/s范围内,精度可以达到±1%,与目前工业应用中的交流供电的电磁流量计的精度相差无几。同时可显示瞬时流量和累积流量,进行正反向流量测量。采用两节容量为10Ah的锂电池,可以持续工作两年左右,能够实现电磁流量计电池供电的低功耗要求。
点击次数:  更新时间:2017-06-13 18:10:43  【打印此页】  【关闭